
On A New Symbolic Method for Initial Value
Problems for Systems of Higher-order Linear

Differential Equations
Srinivasarao Thota

Abstract—This paper presents a symbolic method for solving
an initial value problem (IVP) for the system of higher-order lin-
ear differential equations (HLDEs) with constant coefficients. In
the proposed symbolic method, we apply the algebra of integro-
differential operators for computing the Green’s operator and Green’s
function of a fully-inhomogeneous IVP on the level of operators. Th
algorithm of the proposed method will help to implement the manual
calculations in commercial packages such as Mathematica, Matlab,
Singular, Scilab etc. Maple implementation of the proposed method
is discussed and provided sample computations. Certain examples are
presented to illustrate the proposed method.
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I. INTRODUCTION

In the last five decades, the development of relatively new
field of general boundary value problems has been vigorously
pursued by many researchers and engineers, noticeably by
Brown, Krall and his associates [12]. Systems of HLDEs arise
naturally in many applications, for example, the application of
multi-body systems, models of electrical circuits, robotic mod-
elling and mechanical systems, diffusion processes, dissipative
operators, nuclear reactors, vibrating wires in magnetic fields
etc.

Suppose F = C∞[a, b] and [a, b] is finite interval of R.
In this paper, we are concerned with a system of s linear
differential equations of order t ≥ 1 of the form

At(x)Dtu(x) + · · ·+A1(x)Du(x) +A0(x)u(x) = f(x), (1)

where D = d
dx ; Ai(x) ∈ Fs×s for i = 0, . . . , t;

At(x) 6= 0 is the leading coefficient matrix; f(x) =
(f1(x), . . . , fs(x))T ∈ Fs is a vector forcing function; u(x) =
(u1(x), . . . , us(x))T ∈ Fs is a s-dimensional unknown vector.

Definition 1. A system of the form (1) satisfying the
condition det(At(x)) 6= 0 (determinant of At(x) 6= 0) is
referred as the system of first kind, otherwise it is a system
of differential-algebraic equations, where At(x) is the leading
coefficient matrix of the given system of HLDEs (1).

In this paper, we consider a system of the first kind with
constant coefficients, however the same idea can be extended

Srinivasarao Thota is with the Department of Applied Mathematics, School
of Applied Natural Sciences, Adama Science and Technology University,
Post Box No. 1888, Adama, Ethiopia. E-mail: srinithota@ymail.com and
srinivasarao.thota@astu.edu.et

Manuscript received May 17, 2018; revised .

to variable coefficients. For obtaining the unique solution, the
given system (1) must have a set of initial conditions. The
number of initial conditions is related to the dimension of the
kernel of matrix differential operator (say L) of a given system.
Since the system (1) is of first kind, the matrix differential
operator L is regular and hence dim(Ker(L)) = st. Therefore,
one must required st initial conditions to compute the unique
solution. Suppose

B1u(x) = c1, B2u(x) = c2, . . . , Btu(x) = ct, (2)

are st initial conditions, where Bi ∈ (Fs×s)∗ are initial condi-
tion operators and ci = (ci1, . . . , cis)

T ∈ Rs, for i = 1, . . . , t.
Note that we can represent the given initial conditions in
operator form as above. For example, the initial conditions
u1(0) = 5, u′2(0) = 3 can be written in symbolic notations

as B1u(x) = c1, where B1 =

(
E 0
0 ED

)
∈ (F2×2)∗,

c1 =

(
5
3

)
∈ R2.

One can observe that the IVP (1)-(2) is fully-
inhomogeneous (both the system and the initial conditions
are inhomogeneous) as follows

Lu = f,

B1u = c1, . . . , Btu = ct,
(3)

where L : F → F is a matrix differential operator defined
as L = AtDt + · · · + A1D + A0 ∈ Fs×s[D]; B1, . . . , Bt are
the initial condition operators; and c1, . . . , ct ∈ Rs are the
initial data. To treat the system (3) as an operator problem,
the parameters f and c1, . . . , ct on right hand side of the
system (3) are important. The main goal of this paper is
to find an operator G such that u = G(f ; c1, . . . , ct) and
B1G(f ; c1, . . . , ct) = c1, . . . , BtG(f ; c1, . . . , ct) = ct, for the
given L and B1, . . . , Bt. As mentioned in [8], the operator G
is called the Green’s operator.

In the literature survey, [2], [6], [10], [11], [13], [16], [19], it
is seen that there is no symbolic method/algorithm for solving
the IVPs of the form (3) on the level of operators to find the
matrix Green’s operator and the corresponding vector Green’s
function via integro-differential algebras. This paper presents a
new algorithm for finding the matrix Green’s operator as well
as the vector Green’s function of a fully-inhomogeneous IVPs.
From the general observation, one can always solve the fully-
inhomogeneous IVP whenever the homogeneous IVP can be
solved. There are familiar forms to express the general solution
of a fully-inhomogeneous IVP as sum of the general solution
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of a semi-homogeneous IVP and any one particular solution
of a semi-inhomogeneous IVP. To find an explicit formula for
the solution corresponding to the general linear systems (3),
we use the concept of Moore-Penrose generalized inverse and
the classical technique of interpolation.

The following symbols are used in present paper.
• Differential operator D is defined as Df(x) = df(x)

dx .

• Integral operator A is defined as Af(x) =
x∫
a

f(x) dx,

for a fixed initial value a ∈ R.
• Evaluation operator E is defined as Ef(x) = f(a),

evaluates at the initialization point a, for a fixed initial
value a ∈ R.

• Matrix differential operator of order s is denoted by L.
• Initial condition operators are denoted by Bi, for i =

1, . . . , t.
• Initial data is denoted by ci ∈ Rs.
• Vector initial data is denoted by c = (c1, . . . , ct)

T ∈
Rst.

• Matrix initial condition operator is defined as Bi =
EDi−1I , where I is the identity matrix.

• Initial data matrices is defined as Ci = diag(ci) ∈ Rs×s,
where diag(ci) denotes the diagonal matrix of ci for
i = 1, . . . , t.

• Matrix initial condition operator is denoted by B =
(B1, . . . , Bt)

T .
• Initial data matrix is denoted by C = (C1, . . . , Ct)

T .
• Exponential matrix X at a is denoted by Xa.

II. OPERATOR-BASED REPRESENTATION OF THE SYSTEM

In order to represent the systems of HLDEs with initial
conditions in operator-based notations, we first recall the basic
concepts of integro-differential algebras and operators, see, for
example, [10] for further details.

A. Algebra of Integro-Differential Operators

Throughout this section K denotes the field of characteristic
zero.

Definition 2. [10] The algebraic structure (F ,D,A) called
an integro-differential algebra over K if F is a commutative
K-algebra with K-linear operators D and A such that
• Section axiom: D(Af) = f,
• Leibniz axiom: D(fg) = (Df)g + f(Dg),
• Differential Baxter axiom: (ADf)(ADg) + AD(fg) =

(ADf)g + f(ADg)

are satisfied. Here D : F → F and A : F → F are two maps
such that D is a derivation and A is a K-linear right inverse of
D. The map A is called an integral for D. An integro-differential
algebra over K is called ordinary if Ker(D) = K.

The operators J = AD and E = 1 − AD are projectors,
called the initialization and the evaluation of F respectively.
For an ordinary integro-differential algebra, the evaluation can
be translated as a multiplicative linear functional (character)
E : F → K. For example [10], F = C∞(R) with D = d

dx and
A =

∫ x

a
; Ef(x) = f(a), evaluates f(x) at the initial point a,

and Jf(x) = f(x)− f(a) applies the initial condition.

The following proposition shows that the matrix ring Fs×s

is an integro-differential algebra if F is an integro-differential
algebra.

Proposition 3. Let F be an integro-differential algebra over
a field K. Then the matrix ring Fs×s is again an integro-
differential algebra over K.

Proof: Let M = (mij), N = (nij) ∈ Fs×s. Then
section axiom is clearly satisfied i.e., D(AM) = M . We

have
s∑

r=1
D(mirnrj) =

s∑
r=1

(Dmir)nrj +
s∑

r=1
mir(Dnrj), for

i, j = 1, . . . , s, hence Liebnitz axiom is satisfied. Now, for
differential Baxter axiom, we have
s∑

r=1
(ADmir)(ADnrj) +

s∑
r=1

AD(mirnrj) =
s∑

r=1
(ADmir)nrj +

s∑
r=1

mir(ADnrj). Hence, the matrix ring Fs×s is an integro-

differential algebra over K.
The algebra of integro-differential operators is defined in the

following definition. One can extend the definition to vector
case similar to Proposition 3.

Definition 4. [10] Let (F ,D,A) be an ordinary integro-
differential algebra over K and Φ ⊆ F∗. The integro-
differential operators F [D,A] are defined as the K-algebra
generated by D and A, the functions f ∈ F , and the functionals
E ∈ Φ, modulo the Noetherian and confluent rewrite system
given in Table I.

Since we are interested in symbolic formulation, the given
system of HLDEs, initial conditions and the inhomogeneity
constants are denoted by triplet (L,B,C), where L = AtDt +
· · · + A1D + A0 is a surjective linear matrix differential
operator [5] of order s; B = (B1, . . . , Bt)

T is a matrix
operator of initial conditions, here Bi = EDi−1I ∈ (Fs×s)∗;
and C = (C1, . . . , Ct)

T ∈ Rst×s, here Ci = diag(ci) ∈ Rs×s.
Now the symbolic representation of the system (3) is

Lu = f,

Bu = c,
(4)

where c = (c1, . . . , ct)
T . We are not only looking for the

solution of a particular system of HLDEs of the form (4) by
fixing f and c on its right hand side; but also to obtain a
generic expression for the solutions. Therefore, we propose
a new algorithm that transform the given system and initial
conditions into operator based notations on suitable spaces.

The set of independent solutions, say {v1, . . . , vst}, of the
homogeneous system Lu = 0 is called the fundamental system
and the matrix U = [v1 · · · vst] ∈ Fs×st is called the
fundamental matrix. In other words, the columns of U belongs
to Ker(L). Hence we have LU = 0, where 0 is the zero matrix.
There are several methods in literature [2], [4], [5], [6], [11],
[13] to compute such fundamental matrix of a given matrix
differential operator L. For example, the classical approach in
which we convert the given system into a first order system.
Indeed, if ũ′ = Mũ, where M is the companion matrix, is first
order homogeneous system of (1), then the fundamental matrix
is obtained from the first s rows of solution X = eMx. The
solution, X = eMx, of the homogeneous first order system is
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called the exponential matrix and we denote it by X; and Xa

denotes the exponential matrix at a fixed point a ∈ R.

Definition 5. A matrix differential operator L ∈ Fs×s is
called regular if it has a regular (non-singular) exponential
matrix.

Definition 6. An IVP for HLDEs (L,B,C) is called regular
if it has a unique solution, otherwise it is called singular.

The following proposition gives a regularity test for an IVP
in terms of linear algebras.

Proposition 7. [10], [19] Let V = [v1, . . . , vm] be the
fundamental matrix for a matrix differential operator L, where
vi = (vi1, . . . , vis)

T ∈ Fs; and B = [B1, . . . , Bn]T be a sub-
space of initial conditions, where Bi = EDi−1I ∈ (Fs×s)∗.
Then the following statements are equivalent:
• (L,B,C) is regular, i.e. there exists a unique solution

for (L,B,C).
• m = sn, and the evaluation matrix,

E =


m∑
i=1

Bi1v1i · · ·
m∑
i=1

Bi1vmi

...
. . .

...
m∑
i=1

Bimv1i · · ·
m∑
i=1

Bimvmi

 ∈ Rst×st (5)

is regular.
• Fs = Ker(L)⊕B⊥.

In order to compute the desired Green’s operator and
Green’s function, we decompose the solution of fully-
inhomogeneous IVP into the solution of semi-inhomogeneous
IVP (L,B, 0) and the solution of semi-homogeneous IVP
(L,B,C) respectively.

III. A NEW SYMBOLIC ALGORITHM

Recall the symbolic formulation of IVP defined in Section II
as follows

Lu = f,

Bu = c,
(6)

where L = AtDt + · · ·+A1D +A0, B = (B1, . . . , Bt)
T and

c = (c1, . . . , ct)
T .

A. Solution of Semi-inhomogeneous Systems

In this section, we find the solution of semi-inhomogeneous
IVP, i.e. for a given vector forcing function f and homoge-
neous initial conditions, we find u ∈ Fs such that

Lu = f,

B1u = · · · = Btu = 0,
(7)

where B1, . . . , Bt ∈ (Fs×s)∗ orthogonally closed subspace of
the initial conditions. The key step to find the matrix Green’s
operator G of the system (7) is the oblique Moore-Penrose
inverse of matrix differential operator L with initial condition,
i.e. LG = I and BG = 0. Before presenting the proposed
algorithm, we recall the variation of parameters formula for
scalar differential equation in the following lemma.

Lemma 8. [4], [5], [10] Suppose L is a monic linear
differential operator of the following form with order m > 0,

L = Dm + a1Dm−1 + · · ·+ am,

with fundamental system {v1, . . . , vm} of L. Then the IVP

Ly = f,

Ey = EDy = · · · = EDm−1y = 0,
(8)

has the unique solution, given by

y =
m∑
i=1

viAdi
d

f, (9)

where d is the determinant of Wronskian matrix W of
{v1, . . . , vm}; di is the determinant of Wi obtained from W
by replacing the i-th column by m-th unit vector; and A is the
integral operator.

For the shake of completeness and convenience to reader,
we include sketch of the proof as follows.

Proof: We can transform the IVP (8) into first order linear
system as follows

ỹ′ = Mũ+ f̃ ,

Eỹ = 0,
(10)

where M is the companion matrix and f̃ = (0, . . . , f)T . Then,
the solution of the first-order system (10) can be computed [2],
[4], [5], [18] as

ỹ = WAW−1f̃ ,

where W is the Wronskian matrix of {v1, . . . , vm}. Now, the
solution of the given IVP (8) is obtained from the first row of
ỹ as follows

y =
m∑
i=1

viAdi
d

f,

as stated.
Now the following theorem presents a symbolic logarithm

to obtain the solution of the semi-inhomogeneous IVP (7).

Theorem 9. Let (F ,D,A) be an ordinary integro-differential
algebra. For a given regular matrix differential operator
L = AtDt + · · · + A1D + A0 and a fundamental system
l1, . . . , lst for scalar differential operator L = det(L), the
semi-inhomogeneous IVP

Lu = f,

Bu = 0,

has the unique solution

u = (u1, . . . , us)
T =

(
s∑

k=1

D1
kL♦fk, . . . ,

s∑
k=1

Ds
kL♦fk

)T

∈ Fs,

and the Green’s operator is

G =

D
1
1L♦ . . . D1

sL♦

...
. . .

...
Ds

1L♦ . . . Ds
sL♦

 ∈ Fs×s[D,A],
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where Dj
i is the determinant of the matrix differential operator

Lj
i obtained from L by replacing j-th column by the i-th

unit vector, and L♦ is a fundamental right inverse of L com-
puted using the variation of parameters formula (presented in
Lemma 8),

L♦ =
st∑
i=1

liAd
−1di ∈ F [D,A],

here d is the determinant of the Wronskian matrix W for
l1, . . . , lst and di the determinant of the matrix Wi obtained
from W by replacing the ith column by st-th unit vector.

Proof:
The given system Lu = f is regular, for the differential

operator L is regular. Using the generalized Moore-Penrose
inverse concept, we compute the solution u by incorporating
the initial conditions. Suppose L = det(L), then u is com-
puted as

u =

D
1
1 . . . D1

s
...

. . .
...

Ds
1 . . . Ds

s

 1

L
f, (11)

where Dj
i is the determinant of the matrix differential operator

Lj
i , obtained from L by replacing j-th column by the i-th unit

vector.
Now, we required the solution of the IVP for the scalar

equation Lyi = f̃i with initial conditions. Using the variation
of parameters method presented in Lemma 8, we compute the
solution as yi = L♦f̃i =

∑st
i=1 liAd

−1difi, where d is the
determinant of the Wronskian matrix W for l1, . . . , lst and
di the determinant of the matrix Wi obtained from W by
replacing the ith column by st-th unit vector.

Therefore, from equation (11), the solution is

u =

D
1
1 . . . D1

s
...

. . .
...

Ds
1 . . . Ds

s


L

♦f̃1
...

L♦f̃n

 .

On simplification, we have

u = (u1, . . . , us)
T =

(
s∑

k=1

D1
kL♦fk, . . . ,

s∑
k=1

Ds
kL♦fk

)T

.

(12)
From equation (11), we have Green’s operator G is

G =

D
1
1L♦ . . . D1

sL♦

...
. . .

...
Ds

1L♦ . . . Ds
sL♦

 . (13)

We show now that the solution (12) and the Green’s
operator (13) satisfy the given IVP. Indeed, we have

Lu =

(
s∑

p=1

Lp
1

s∑
k=1

Dp
kL

♦fk, . . . ,
s∑

p=1

Lp
s

s∑
k=1

Dp
kL

♦fk

)T

= L(L♦f1, . . . ,L♦fs)
T

= (f1, . . . , fs)
T = f,

where Lj
i is the j-th column and i-th row of L; and LG =

LIL♦ = I . For checking initial conditions,

Biu =

(
EDi−1

s∑
k=1

D1
kL♦fk, . . . ,ED

i−1
s∑

k=1

Ds
kL♦fk

)T

=

(
s∑

k=1

EDi−1D1
kL♦fk, . . . ,

s∑
k=1

EDi−1Ds
kL♦fk

)T

= (0, . . . , 0)T = 0, (∵ E is multiplicative and EL♦ = 0).

The uniqueness of the solution follows from the fact that the
fully-homogeneous IVP has only the trivial solution.

The following Examples 10 (Coupled Spring/Mass Sys-
tem [3, p. 186]) and 11 (steady heat conduction in a ho-
mogeneous rod) show the computation of the matrix Green’s
operator and the vector Green’s function of the given IVP.

Example 10. Consider a coupled spring mass system in
which we suppose two masses m1 and m2 are connected to
two springs of negligible mass having mass spring constant k1
and k2 respectively. Let u1(x) and u2(x) denote the vertical
displacements of the masses from their equilibrium positions.
Then by Newton’s second law we have the motion of the
coupled system as follows:

m1D
2u1 = −k1u1 + k2(u2 − u1)

m2D
2u2 = −k2(u2 − u1).

(14)

For simplicity, we solve the system (14) with k1 = 2, k2 =
0,m1 = 1 and m2 = 1 subject to the initial conditions
u1(0) = 0,Du1(0) = 0, u2(0) = 0,Du2(0) = 0 with forcing
function f = (f1, f2)T .

In symbolic notation, the system (14) is Lu = A2D2u +
A1Du+A0u = f , where

A2 =

(
1 0
0 1

)
, A1 =

(
0 0
0 0

)
, A0 =

(
2 0
0 0

)
and the initial condition operators are

B1 =

(
E 0
0 E

)
and B2 =

(
ED 0
0 ED

)
.

Now the matrix differential operator of the given system is

L = A2D2 +A1D +A0 =

(
D2 + 2 0

0 D2

)
,

and the matrix of initial condition operators B = (B1, B2)T

is

B =


E 0
0 E
ED 0
0 ED

.

The exponential matrix and fundamental matrix of L, respec-
tively, are computed using the classical method [2], [4], [5],
[6], [11], [13], given by

X =


sin(
√

2x) cos(
√

2x) 0 0
0 0 x 1√

2 cos(
√

2x) −
√

2 sin(
√

2x) 0 0
0 0 1 0

,
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U =

(
sin(
√

2x) cos(
√

2x) 0 0
0 0 x 1

)
.

The evaluation matrix is computed as in Proposition 7, given
by

E =


0 1 0 0
0 0 0 1√
2 0 0 0

0 0 1 0

.

Since det(E) 6= 0, there exists a unique solution for (L,B, 0).
Following the algorithm in Theorem 9, the matrix Green’s
operator G of the system (14) is computed as

G =

(
G11 0

0 G22

)
,

where G11 = 1√
2

sin(
√

2x)A cos(
√

2x) −
1√
2

cos(
√

2x)A sin(
√

2x), G22 = xA − Ax and the Green’s
function u = Gf is

u =
sin(
√
2x)√
2

x∫
0

cos(
√

2x)f1 dx− cos(
√
2x)√
2

x∫
0

sin(
√

2x)f1 dx

x
x∫
0

f2 dx−
x∫
0

xf2 dx

.

One can easily verify that LG = I , BG = 0 and Lu = f .

Example 11. Consider the following system of equations
with initial conditions.

u′1 − u2 = 0,

u′2 = f2

with u1(0) = 0, u2(0) = 0.

(15)

Symbolic representation of the given IVP (15) is Lu = f and
Bu = 0, where the matrix differential operator and initial
condition operator are

L =

(
D − 1
0 D

)
, B =

(
E 0
0 E

)
, f =

(
0
f2

)
.

Now from Theorem 9, the matrix Green’s operator is

G =

(
A xA− Ax
0 A

)
,

and the solution u = Gf is given by

u =

x
x∫
0

f2 dx−
x∫
0

xf2 dx

x∫
0

f2 dx

 .

Here clearly LG = I and BG = 0.

B. Solution of Semi-homogeneous Systems

In this section, we find the solution of semi-homogeneous
IVP, i.e. for a given inhomogeneity constants c1, . . . , ct at
initial point, we find u ∈ Fs such that

Lu = 0,

B1u = c1, . . . , Btu = ct.
(16)

The key step to find the matrix Green’s operator G for sys-
tem (16) is the interpolation technique over integro-differential
algebra such that LG = 0 and BG = C. The following
theorem presents an algorithm to compute the solution of the
given IVP (16).

Theorem 12. Let (F ,D,A) be an ordinary integro-
differential algebra. For a given matrix differential operator
L and an exponential matrix X of L, the semi-homogeneous
IVP

Lu = 0,

Bu = c,

has the unique solution

u = G(c1, . . . , ct) =


st∑

k=1

v1,kEd−1
st∑

p=1
dkp c̃p

...
st∑

k=1

vs,kEd−1
st∑

p=1
dkp c̃p

 ∈ Fs,

where d is the determinant of the exponential matrix Xa ∈
Fst×st; {v1, . . . , vst} is a fundamental system for L; dij is
the determinant of Xi

j obtained from Xa by replacing the
i-th column by the j-th unit vector; and (c̃1, . . . , c̃st)

T =
(c1, . . . , ct)

T = c. The matrix Green’s operator is

G = UX−1a C.

Proof: Since the solution of the given IVP depends
only on the inhomogeneous initial data, this amounts to an
interpolation problem with initial conditions. Suppose

u = λ1v1 + · · ·+ λstvst (17)

is the required solution of the given IVP, where {v1, · · · , vst}
is the fundamental system of L and λ1, . . . , λst are the
coefficients to be determined. From the given initial conditions
with c, one can express the equation (17) as

Xa(λ1, . . . , λst)
T = (c̃1, . . . , c̃st)

T ,

since Xa is regular, X−1a exist. Henceλ1
...
λst

 = X−1a

 c̃1
...
c̃st

 . (18)

Therefore, from equations (17)-(18), the solution is

u = (v1, . . . , vst)

λ1
...
λst


= (v1, . . . , vst)X

−1
a

 c̃1
...
c̃st



=


st∑

k=1

v1,kEd−1
st∑

p=1
dkp c̃p

...
st∑

k=1

vs,kEd−1
st∑

p=1
dkp c̃p

 , (19)
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where d is the determinant of the exponential matrix Xa ∈
Fst×st and {v1, . . . , vst} is a fundamental system of L; dij
is the determinant of Xi

j obtained from Xa by replacing the
i-th column by the j-th unit vector; and (c̃1, . . . , c̃st)

T =
(c1, . . . , ct)

T = c.
Again, from equations (17)-(18), the Green’s operator such
that LG = 0 and BG = C is

G = (v1, . . . , vst)X
−1
a diag(c1, · · · , ct) = UX−1a C. (20)

We show now that the solution (19) and the Green’s
operator (20) satisfy the given IVP. Indeed, we have

Lu = L


st∑

k=1

v1,kEd−1
st∑

p=1
dkp c̃p

...
st∑

k=1

vs,kEd−1
st∑

p=1
dkp c̃p



=


s∑

r=1
Lr
1

st∑
k=1

vr,kEd−1
st∑

p=1
dkp c̃p

...
s∑

r=1
Lr
s

st∑
k=1

vr,kEd−1
st∑

p=1
dkp c̃p


= LUX−1a

 c̃1
...
c̃st

 =

0
...
0

 , (∵ LU = 0),

where Lj
i is the j-th column and i-th row of L; and LG =

LUEX−1a C = 0. For initial conditions, we have

Biu =


EDi−1

st∑
k=1

vr,kEd−1
st∑

p=1
dkp c̃p

...

EDi−1
st∑

k=1

vr,kEd−1
st∑

p=1
dkp c̃p



=


st∑

k=1

EDi−1vr,kEd−1
st∑

p=1
dkp c̃p

...
st∑

k=1

EDi−1vr,kEd−1
st∑

p=1
dkp c̃p


=

c̃(i−1)t+1

...
c̃(i−1)t+t

 =

ci,1...
ci,t

 = ci, (∵ E is multiplicative),

and hence BG = C. The uniqueness of the solution follows
from the fact that the evaluation matrix Ed is regular.

C. Solution of Fully-inhomogeneous Systems

Now, the solution of fully-inhomogeneous systems of the
form (3) is the composition of two solutions obtained in
Section III-A and Section III-B respectively. Generalization
of this fact is given in the following theorem.

Theorem 13. Let (F ,D,A) be an ordinary integro-
differential algebra. For a given matrix differential operator

L = AtDt + · · ·+A1D+A0, an exponential matrix X and the
inhomogeneity constants c1, . . . , ct, the fully-inhomogeneous
IVP

Lu = f,

Bu = c

has the unique solution

u = G1(f) +G2(c1, . . . , ct) ∈ Fs

and the matrix Green’s operator is

G = G1 +G2 ∈ Fs×s[D,A],

where G1 and G2 are the matrix Green’s operators of semi-
inhomogeneous IVP and semi-homogeneous IVP respectively,
computed as in Theorem 9 and Theorem 12.

The following Example 10 and Example 11 illustrate the
computation of matrix Green’s operator and vector Green’s
function of the given IVPs with inhomogeneous initial condi-
tions. In [3], authors solved the Example 14 using the method
of solution by elimination. However, we solve this example
using the proposed symbolic algorithm in Case (ii) to show
the simplicity of proposed algorithm.

Example 14. Consider the system as given Example 10

m1D
2u1 = −k1u1 + k2(u2 − u1)

m2D
2u2 = −k2(u2 − u1).

(21)

Case (i): We solve system (21) subject to the initial conditions
u1(0) = 1,Du1(0) = 2, u2(0) = 3,Du2(0) = −1 for
simplicity, with forcing function f = (f1, f2)T .

Operator notations of the given system are

L =

(
D2 + 2 0

0 D2

)
, B =


E 0
0 E
ED 0
0 ED

, C =


1 0
0 3
2 0
0 −1


and c =


1
3
2
−1

,

and from Example 10, the matrix Green’s operator G1 of semi-
inhomogeneous system is

G1 =

(
G111 0

0 G122

)
,

where G111 = 1√
2

sin(
√

2x)A cos(
√

2x) −
1√
2

cos(
√

2x)A sin(
√

2x) and G122 = xA−Ax. Following the
algorithm in Theorem 12, the matrix Green’s operator G2 of
semi-homogeneous IVP is computed as

G2 =

(
cos(
√

2x) +
√

2 sin(
√

2x) 0
0 3− x

)
.

Now the matrix Green’s operator G of the fully inhomogeneous
IVP (21) is

G =

(
G1 0
0 G2

)
,
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where G1 = sin(
√
2x)√
2

A cos(
√

2x) − cos(
√
2x)√
2

A sin(
√

2x) +

cos(
√

2x) +
√

2 sin(
√

2x), G2 = xA − Ax + 3 − x and the
Green’s function u = G(f ; c1, c2, c3, c4) is

u =

(
u1
u2

)
,

where u1 = sin(
√
2x)√
2

x∫
0

cos(
√

2x)f1 dx −

cos(
√
2x)√
2

x∫
0

sin(
√

2x)f1 dx +
√

2 sin(
√

2x) + cos(
√

2x)

and u2 = x
x∫
0

f2 dx −
x∫
0

xf2 dx − x + 3. One can easily

check that LG = I , BG = C, and Tu = f , BiG = Ci.
Case (ii): Now we consider the system (21) with k1 =

6, k2 = 4,m1 = 1 and m2 = 1 subject to the conditions
u1(0) = 0,Du1(0) = 2, u2(0) = 0,Du2(0) = −1 with forcing
function f = (0, 0)T as in [3, p. 186]. Proceeding similar to
Case (i), we have

L =

(
D2 + 10 −4
−4 D2 + 4

)
, B =


E 0
0 E
ED 0
0 ED

,

C =


0 0
0 0
1 0
0 −1

,

and the solution of (L,B,C) is

u =

(
−
√
2

10 sin(
√

2x) +
√
3
5 sin(2

√
3x)

−
√
2
5 sin(

√
2x)−

√
3

10 sin(2
√

3x)

)
.

Example 15. Consider the system of equations given in
Example 11 with inhomogeneous initial conditions as follows

u′1 − u2 = 0,

u′2 = f2

u1(0) = α1, u2(0) = α2.

(22)

Following Theorem 12, the matrix Green’s operator and the
solution of semi-homogeneous IVP are

G2 =

(
α1 xα2

0 α2

)
and u =

(
α1 + xα2

α2

)
.

Now the matrix Green’s operator G of the fully inhomogeneous
IVP (22) is

G =

(
A + α1 xA− Ax+ xα2

0 A + α2

)
and the solution u = G(f ;α1, α2) is given by

u =

x
x∫
0

f2 dx−
x∫
0

xf2 dx+ α1 + xα2

x∫
0

f2 dx+ α2

 .

In Section V, we provide certain real life examples using
proposed algorithm.

IV. PROPOSED ALGORITHM IN MAPLE

In this section, we discuss the Maple implementation of
the proposed algorithm, IVPforHLDEs. We have created
different data types, using the Maple package IntDiffOp
implemented by Anja Korporal et al. [1], to express the matrix
operators like matrix differential operator, matrix Green’s op-
erator etc. The Maple package IVPforHLDEs is available at
http://www.sinivasaraothota.webs.com/research with example
worksheet.

The following example gives sample computations to solve
the system of differential equations with inhomogeneous initial
conditions using IVPforHLDEs package.

Example 16. In this example, we solve the Example 10
using Maple implementation as follows.
> with(IntDiffOp):with(IVPforHLDEs):
> A2:=Matrix([[1,0],[0,1]):
> A1:=Matrix([[0,0],[0,0]):
> A0:=Matrix([[2,0],[0,0]):
> L:=MatrixDiffOp(A2,A1,A0);[

2 + D2 0
0 D2

]
> c:=Matrix([[1],[3],[2],[-1]):
> f := Matrix([[f1(x)], [f2(x)]]):
> fm:=FundamentalMatrix(L);[

sin(
√

2x) cos(
√

2x) 0 0
0 0 x 1

]
> EvMatrix(L);

0 1 0 0
0 0 0 1√
2 0 0 0

0 0 1 0


> G:=MatrixGreensOp(L,c);
[[4*sin(2 ˆ(1/2)*x).A.1/8*cos(2 ˆ(1/2)*x)*2 ˆ(1/2)-4*cos(2

ˆ(1/2)*x). A. 1/8 * sin(2 ˆ(1/2) * x) *2 ˆ(1/2) + cos(2 ˆ(1/2)*x)
+ 1/2 * sin(2 ˆ(1/2) * x) * 2 ˆ(1/2), 0], [0, 4 * x . A . 1/4 *
cos(2 ˆ(1/2) * x) ˆ2 + 4 * x . A . (1/4 - 1/4 * cos(2 ˆ(1/2) *
x) ˆ2) - 4 . A . 1/4 * x * cos(2 ˆ(1/2) * x) ˆ2 - 4 . A . -1/4 *
x * (-1 + cos(2 ˆ(1/2) * x) ˆ2) + 3 - x]]

Matrix notation of above output G is,[
G11 0

0 G22

]
where G11 = sin(

√
2x)√
2

A cos(
√

2x) − cos(
√
2x)√
2

A sin(
√

2x) +

cos(
√

2x) +
√

2 sin(
√

2x) and G22 = xA− Ax+ 3− x.
> u:=ApplyMatrixGreensOp(L,f,c);[

u1

u2

]

where u1 = 1√
2

sin(
√

2x)

(
x∫
0

cos(
√

2x)f1 dx

)
−

1√
2

cos(
√

2x)

(
x∫
0

sin(
√

2x)f1 dx

)
+ sin(

√
2x)
√

2 +

cos(
√

2x) and u2 = x
x∫
0

f2 dx−
x∫
0

xf2 dx+ 3− x.
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> MultiplyMatrixOp(L,G);[
1 0
0 1

]
> fun:= Matrix([[exp(x)],[x]]):
> ApplyMatrixGreensOp(L, fun, c);[

5
6 sin(

√
2x)
√

2 + 1
3e

x + 2
3 cos(

√
2x))

1
6x

3 + 3− x

]

V. EXAMPLES

Example 17. Suppose, we want to model the reaction path
X 
k2

k1
Y

k3−→ Z staring with X . The reaction path can be
described by the differential equations [9] as follows

dCX

dt
= −k1CX + k2CY ,

dCY

dt
= k1CX − (k2 + k3)CY

at t = 0; CX = C0
X ,

CY = 0,

(23)

where CX , t are concentration of X and time respectively. If
we define u1 = CX

C0
X

and u2 = CY

C0
X

, then the system (23) can
be represent in symbolic notations as Lu = f and Bu = c,
where

L =

(
D + k1 −k2
−k1 D + k2 + k3

)
; f =

(
f1
f2

)
;

B =

(
E 0
0 E

)
; c =

(
1
0

)
and

C =

(
1 0
0 0

)
,

here f = 0. In [9], authors presented the approximate solution
of the system (23) by Euler’s method numerically for a special
choice of k1 = 1000, k2 = 1 and k3 = 1. However, the
exact solution of (23) using the proposed method is computed
similar to Example 14 as

u =

(
u1
u2

)
.

where u1 =
(

499
√
89+4717
9434

)
e−(501+53

√
89)x −(

499
√
89−4717
9434

)
e(−501+53

√
89)x and u2 =

500
√
89

4717

(
e(−501+53

√
89)x − e−(501+53

√
89)x

)
.

We can easily observe that Lu = 0 and Bu = c.

Example 18. Consider a system of Stiff HLDEs of the
following form with initial conditions

u′1 = 9u1 + 24u2 + 5 cos(t)− 1

3
sin(t),

u′2 = −24u1 − 51u2 − 9 cos(t)− 1

3
sin(t),

u1(0) =
4

3
and u2(0) =

2

3
.

(24)

The symbolic representation of the system (24) is Tu = f and
Bu = c, where

L =

(
D− 9 −24

24 51 + D

)
, u =

(
u1
u2

)
,

f =

(
5 cos(t)− 1

3 sin(t)
−9 cos(t) + 1

3 sin(t)

)
;B =

(
E 0
0 E

)
c =

(
4
3
2
3

)
, C =

(
4
3 0
0 2

3

)
.

Using the proposed algorithm in Theorem 13, we have the
matrix Green’s operator

G =

(
g11 g12
g21 g22

)
;

where g11 =
4

3
e−3tAe3t − 1

3
e−39tAe39t − 4

9
e−39t +

16

9
e−3t,

g12 =
2

3
e−3tAe3t − 2

3
e−39tAe39t − 4

9
e−39t +

4

9
e−3t,

g21 = −2

3
e−3tAe3t +

2

3
e−39tAe39t +

8

9
e−39t − 8

9
e−3t,

g22 = −1

3
e−3tAe3t +

4

3
e−39tAe39t +

8

9
e−39t − 2

9
e−3t,

and the exact solution is

u =

(
2e−3t + 1

3 cos(t)− e−39t
−e−3t − 1

3 cos(t) + 2e−39t

)
.

It is clear that Lu = f and Bu = c = ( 4
3 ,

2
3 )T .

VI. CONCLUSION

In this paper, we presented a new symbolic method to
solve an initial value problem for the system of higher-order
linear differential equations with constant coefficients. Certain
examples are discussed to illustrate the proposed symbolic
algorithm. We also discussed the implementation of the pro-
posed logarithm in Maple with sample computations. We thank
Motilal Nehru National Institute of Technology Allahabad,
India for supporting the Maple computational work.

TABLE I
REWRITE RULES FOR INTEGRO-DIFFERENTIAL OPERATORS

fg → f · g Df → fD+ f ′ AfA→ (Af)A− A(Af)

χφ→ φ Dφ→ 0 AfD→ f − Af ′ − E(f)E

φf → φ(f)φ DA→ 1 Afφ→ (Af)φ
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